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Abstract 

Underwater environments, especially the coral reefs, are the habitat of many critically endangered species. Extensive monitoring 

of these aquatic ecosystems is essential for conserving and deep understanding of these vulnerable habitats. Monitoring by 

extracting details from underwater images of turbid, hazy marine environments is extremely challenging. In this work, a novel 

annotated dataset is created for three classes of objects in the images of coral reef environment considering fish, rock/coral and 

background for the Fish4Knowledge dataset, a benchmark dataset primarily for binary segmentation. This work also proposes a 

multiclass ResUnet based image segmentation model for the newly created multiclass annotations. Various encoder-decoder 

convolutional architectures were analysed and found that ResUnet exhibits better robustness. The performance of the multiclass 

ResUnet model is also analysed by optimizing with different cost functions. Various underwater noisy conditions are simulated in 

the test images to find the robustness of the model, and observed that the proposed model optimised with Jaccard loss performs 

https://www.ijmems.in/
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better even in extremely noisy scenarios. 

 

Keywords- Underwater image, Encoder-decoder model, Multi-class image segmentation, Fish4Knowledge, Underwater noise. 

 

 

 

1. Introduction 
Underwater imaging is an essential modality for various research fields including marine biology, 

environmental monitoring as well as exploration and navigation. The coral reef environment especially, 

possesses high biodiversity and is home to several vulnerable fishes, which can be indicator species for 

shifts in climatic conditions and pollution levels (Asner et al., 2020). Coral reef ecosystem in addition has 

high economic importance in terms of ecotourism (Yuan et al., 2024). Moreover, many of these fish species 

are on the verge of extinction as well, and the decline of such keystone species may even lead to ecosystem 

collapse (Asner et al., 2022; Mentzel et al., 2024). Close monitoring of these species and the environment 

can also throw light towards a broader understanding of such marine environments and ecosystems (Cael 

et al., 2023; Hoegh-Guldberg et al., 2017; Ortiz and Hermosillo-Núñez, 2024). However, manual efforts in 

continuous monitoring are often impractical and are prone to human errors. Hence, proper adoption of 

underwater imaging and computational techniques has to be utilised for close and careful analysis in these 

domains (Apprill et al., 2023; Horoszowski-Fridman et al., 2024). 

 

In recent decades, there have been many advancements in underwater imaging techniques and data 

collection methods. However, the analysis of these images was found to be very challenging due to poor 

visibility, colour distortion, illumination variations, turbidity, haziness, noise and other artefacts that further 

distort the information. Light gets scattered in all directions when it interacts with the water molecules and 

suspended particles, which results in blurriness. They also cause reflection and refraction of light rays 

leading to the artefacts in brightness, which in turn results in the variation of image contrast. Absorption of 

longer wavelength of light by the water causes the suppression of red-region, disturbs the colour balance, 

and leads to spectral distortions (Duntley, 1963; Singh and Bhat, 2023; Zhou et al., 2023). 

 

Manual analysis is impractical for monitoring very long video streams or footage from underwater 

exploration. Thus, image content analytic techniques such as detection, localisation, segmentation and 

tracking of various targets of interest can play a significant role in understanding underwater scenarios. 

Among them, image segmentation by virtue provides detection along with localisation, which can be 

extended to tracking. Image Segmentation involves partitioning an image into multiple segments or regions, 

and each segment represents a distinct object or region of interest within the image. Semantic Segmentation 

problem can be viewed fundamentally as a classification problem, where the learning model tries to predict 

the corresponding class of each pixel in an image. Hence, the multiclass semantic segmentation problem, 

which is the topic of interest in this work, boils down into a multiclass classification problem in the pixel 

space (Sakshi and Kukreja, 2023; Yu et al., 2023). By segmenting underwater images such as coral reefs, 

researchers and marine biologists can gain valuable insights into the marine ecosystem’s health, 

biodiversity, and overall condition of the marine environment. 

 

Several traditional image segmentation techniques including thresholding, clustering-based, edge-based, 

region-based and soft computing-based approaches have been utilized by the research community in various 

scenarios (Yadav and Pandey, 2022; Yu et al., 2023). Deep Learning techniques are found to outperform 

traditional techniques and proved to adapt better to different real-world scenarios with ambiguities, if 

sufficient amount of data is provided (Ghosh et al., 2019; Li et al., 2024; Minaee et al., 2022). Deep learning 

being a data-centric approach always demands a huge amount of labelled data so that models can learn all 

the possible distributions of data. Labelling and annotating data is a laborious and time-consuming task that 
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needs careful attention (Bhagat and Choudhary, 2018). Data annotation for segmentation in the underwater 

scenario is drawing masks around the regions of interest, such as fish, coral reefs, and various marine 

species. The labelled data helps the model in learning to differentiate between different objects and 

backgrounds in the images. 

 

In recent years, many studies were conducted for developing model for analysing coral reef environment 

with the help of imaging techniques (Li et al., 2024), especially with deep learning approach. Remote 

sensing based study with satellite and ariel imaging was used widely for coral reef monitoring and surveys. 

 

(Giles et al., 2023; Lyons et al., 2024). Habitat mapping and classification of corals from the hyper-spectral 

images was discussed by Rashid and Chennu (2020) and semantic mapping for analysing coral reef 

variations in climate change was proposed by Zhong et al. (2023). Most of the existing researches lacks 

close monitoring of coral ecosystem with special focus on the fish population, which is the key to indicate 

the health and condition of the ecosystem. Moreover, the impact of underwater noise in the images is also 

crucial in the developing a dependable system, which is also lacking in the literature. 

 

This paper aims to analyse ResUnet-based multiclass semantic image segmentation on underwater images 

with multiclass scenarios in the coral reef environment with fish, rock, and background as different classes. 

The Fish4knowledge dataset is adapted for multiclass semantic segmentation by creating annotations for 

three classes of pixels. Multiclass semantic segmentation was carried out using U-Net architecture with the 

encoder backbone utilizing residual modules. The model is quantitatively analysed using evaluation metrics 

like Intersection over Union (IoU), Accuracy, Precision, and Recall. Performance on various simulated 

underwater noise scenarios is also observed to understand the robustness of the model. Thus, this research 

contributes to fill the existing research gaps by developing deep learning model for close monitoring of the 

coral reefs with multiclass objects including rock and fish. Moreover, the work also contributes through the 

analysis of performance of the models with regard to the deterioration that might happen due to the impact 

of prominent underwater noises.  

 

2. Related Works  
Underwater Image analysis has been researched elaborately for the past several years. Some of the most 

noted research works related to underwater datasets and deep learning-based approaches for the analysis of 

underwater datasets are discussed here. 

 

2.1 Underwater Image Dataset 
A few underwater fish datasets are available in the literature. Some of the existing benchmark dataset details 

are as given in the Table 1. Fish4Knowledge Underwater datasets consist of video footage of fish 

assemblage in coral reefs and three ground truth datasets for problems such as target detection, fish species 

recognition and trajectory-based fish behaviour analysis (Boom et al., 2012a; Boom et al., 2012b). Rock 

Fish dataset consist of images of rockfish near seabed collected by ROV for rockfish species recognition 

(Stierhoff and Cutter, 2013). QUT fish dataset (Anantharajah et al., 2014) consists of 3960 images from in 

situ and controlled environment for classification task. Deep Fish dataset consists of images from complex 

underwater fish habitats for problems such as fish count, identifying their locations, and estimate their sizes 

(Saleh et al., 2020). SUIM dataset consists of images collected during ocean exploration containing 

annotations of eight different object categories (Islam et al., 2020). 
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Table 1. Underwater fish dataset characteristics. 
 

Dataset name No. of 

images 

$Task Resolution Environment/ 

Collection method 

Segmentation 

classes 

Rockfish (Stierhoff and Cutter, 2013) 4307 D 1280×720 Insitu — 

QUT (Anantharajah et al., 2014) 3960 CL 480×360 Insitu and Controlled — 

Deep Fish (Saleh et al., 2020) 39766 CL, CN, L, S 1920×1080 Insitu 2 

SUIM (Islam et al., 2020) 1500 S #varying sizes Ocean exploration 8α 

Fish4Knowledge (Boom et al., 2012a) 27370 CL, L, S ∼128×128 Insitu 2 
*Ours 1200 S 128×128 Insitu 3∗ 
*Ours: Created multi-class annotation for the selected images of Plectroglyphido don dicky class in the Fish4Knowledge database with three class 

annotations including Fish, Rock and Background pixel classes 
$Tasks: CL - Classification, CN - Counting, D - Detection, L - Localisation, S - Segmentation 
#varying sizes: 1906 × 1080, 1280 × 720, 640 × 480, and 256 × 256 
∼128×128: Images have varying sizes in the database, but resized to 128 × 128 for processing 

8α: Eight classes including fish, reefs, aquatic plants, wrecks/ruins, human divers, robots, sea-floor, and background 

 

 

2.2 Deep Learning Based Analysis 
Encoder-Decoder architectures of CNN were found to have capabilities for better image segmentation and 

classification (Ji et al., 2021). These approaches outperform conventional techniques and traditional image 

processing algorithms. Over the years, extensive studies on semantic segmentation-based approaches haven 

been conducted in many computer vision problems such as Crowd Tracking and Anomaly Detection 

(Abdullah and Jalal, 2023), Leaf Diseases Detection (He et al., 2024), Retinal Vessel Segmentation (Yakut 

et al., 2023), Fully Convolutional Neural Networks for Improved Brain Segmentation (Khaled et al., 2023). 

Several studies on the underwater ecosystem were also carried out utilizing deep learning architectures for 

fish detection and recognition (Cui et al., 2020; Li et al., 2015; Moniruzzaman et al., 2017). Analysis of 

coral reef fishes by a supervised machine learning model was proposed (Villon et al., 2016) and observed 

better performance over Support Vector Machine (SVM) and Histogram of Oriented Gradients (HOG) 

methods. Islam et al. (2020) proposes a deep residual model with skip blocks for segmenting underwater 

images from ocean exploration with eight classes. Mizuno et al. (2020) has proposed a coral survey method 

using U-net architecture with the help of optical camera system, and Song et al. (2021) proposes a 

classification model DeeperLabC, for coral and non-coral areas with single channel data. Thomas et al. 

(2022) combines two distinct U-Net models to handle RGB images and grayscale images separately and 

reported better feature extraction. Classification methods of seabed images in coral reefs was also developed 

in recent years (Jackett et al., 2023) using the ResNet50 architecture.  

 

U-Net based convolutional encoder-decoder architectures were found to be effective for segmenting 

images, particularly those from the medical domain (Ronneberger et al., 2015). The encoder extracts the 

context, while the decoder consists of the up-sampling path that produces the accurate localized 

segmentation map. U-Net based supervised segmentation (Nezla et al., 2021) and analysis of U-Net based 

segmentation on five different fish species (Thampi et al., 2021) on underwater fish images from 

Fish4Knowledge dataset were also conducted in recent years. 

 

3. Dataset Creation 

3.1 Multiclass Data Annotation 
A novel multiclass dataset annotation is created utilizing the selected images of Plectroglyphido don dicky 

class in the Fish4Knowledge dataset (Boom et al., 2012a; Boom et al., 2012b) with coral reef environment. 

This study was conducted, as a model system for the analysis of coral reef environment and, as a part of a 

broader study regarding habitat loss and keystone species analysis. In this regard, Fish4Knowledge dataset 

was found to be more relevant for the study and hence selected as the candidate dataset for this work. 
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Figure 1. Sample dataset showing: (a) fish images, (b) original binary annotations Bi Mask from Fish4Knowledge 

dataset (Boom et al., 2012a), and (c) proposed multiclass annotations MC Mask. 

 

 

Fish4Knowledge Dataset is an in-situ dataset with low-quality images with 23 classes of fish species, 

primarily for binary segmentation of fish from underwater coral reef scenarios. This research extends the 

dataset by creating multi-class annotations, with classes fish, rock, and background. Three-class annotated 

mask samples, along with their input images and original binary masks, are shown in Figure 1. Data 

preparation for multiclass semantic segmentation is carried out using the Apeer annotation tool (Apeer, 

2023). 

 

 
 

Figure 2. Data distribution of pixel-level data class. 

 

 

Apeer is an intuitive annotation tool for deep learning needs those aids in annotating multidimensional 

datasets. Pixels in each image are classified into three categories: Fish, Rock, and Background class. The 

semantic segmentation annotation option is utilized for creating the annotations. Background class is 

predefined, and two more classes of fish and rock are annotated and masks are exported as tiff images. The 

class distribution of background, fish, and rock is very unbalanced, and hence, a weighting matrix is used 

for processing the images. Class distribution, hex-code for class annotations, and encoded class values are 

as shown in Table 2. The data distribution indicating the pixel-level data classes is shown in Figure 2. 
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Table 2. Proposed data annotation details of three classes. 
 

Class Background Fish Rock 

Class Distribution1 10730739 2441037 6489024 

Annotation Color2 #6900ff #5f7ee2 #df7a5e 

Encoded Value3 0 1 2 
1Distribution of pixel classes for the entire dataset (pixel count) 
2Hex color code value used for pixel class annotation 
3Label encoded value for the pixel classes 

 

 

3.2 Data Pre-processing 
The Fish4Knowledge data set contains images of varying sizes. The selected images of Plectroglyphido 

don dicky class images are standardized to the size of 128×128. Input image data is reshaped to 128×128×3 

and scaled from [0:255] to [0:1]. The mask is reshaped and converted to categorical values by applying 

label encoding to make pixel labels as 0, 1, 2 for the background, fish, and rock classes respectively. The 

dataset created consists of 1200 image annotations. The training set comprises 70% of the total data while 

remaining equally divided for validation (15%) and testing (15%). 

 

4. Methodology 

4.1 Multiclass ResUnet Model  
The network architecture for multiclass semantic segmentation is adapted from the U-Net architecture 

(Ronneberger et al., 2015). The encoder section of the model consists of a series of convolutional, batch 

normalisation and maxpool layers. The decoder section consists of up-sampling and transpose convolutions. 

The residual block provides skip connections between a series of operations, thereby incorporating identity 

mapping and reducing vanishing gradients (He et al., 2016). 

 
Table 3. Network structure of the multiclass ResUnet architecture for the segmentation of three-class 

Fish4Knowledge annotation data. 
 

Section Residual units Conv layer Filter size Channel Stride Output size 

Input      128x128x3 

Encoding 

Unit 1 
Conv 1 3x3 64 1 128x128x64 

Conv 2 3x3 64 1 128x128x64 

Unit 2 
Conv 3 3x3 128 2 64x64x128 

Conv 4 3x3 128 1 64x64x128 

Unit 3 
Conv 5 3x3 256 2 32x32x256 

Conv 6 3x3 256 1 32x32x256 

Bridge Unit 4 
Conv 7 3x3 512 2 16x16x512 

Conv 8 3x3 512 1 16x16x512 

Decoding 

Unit 5 
Conv 9 3x3 256 1 32x32x256 

Conv 10 3x3 256 1 32x32x256 

Unit 6 
Conv 11 3x3 128 1 64x64x128 

Conv 12 3x3 128 1 64x64x128 

Unit 7 
Conv 13 3x3 64 1 128x128x64 

Conv 14 3x3 64 1 128x128x64 

Output  Conv 15 1x1 3 1 128x128x3 

 

 

ResUnet utilizes residual blocks in the encoder section of U-Net-based encoder-decoder architecture to get 

better feature extraction (Zhang et al., 2018). ResUnet takes the input to a sequence of convolutional (Conv), 

batch normalisation (BN), ReLU, Conv and then add with input using the residual skip connection. 

Thereafter a sequence of residual blocks with a set of BN, ReLU, Conv, BN, ReLU, Conv followed by 

addition to the input to the residual block are utilised for the encoder and decoder. In the decoder section, 

the encoder features are first up-sampled and then concatenated with the output of the corresponding 
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encoder section. ResUnet architecture, designed for binary segmentation, is adapted for multiclass scenarios 

by incorporating a three channel Conv layer followed by a SoftMax layer in the decoder section. The 

architecture of multiclass ResUnet model is shown in Figure 3. The Conv filter size and activation function 

details of the multiclass ResUnet architecture is shown in Table 3. 

 

 
 

Figure 3. The architecture of the multiclass ResUnet model. 

 

 

4.2 Different Encoder Backbone Architectures 
Different CNN architectures are analysed by changing the encoder section of U-Net segmentation 

architectures such as basic U-Net encoder, VGGnet (VGG19), Inception v3 and ResUnet architecture. The 

multiclass segmentation models are compared with the segmentation performance using the binary 

segmentation images of the Fish4Knowledge dataset using U-Net. The capability of segmentation 

architectures in identifying the fish characteristics from the image are compared and it has been observed 

that the addition of the new class improved the segmentation of the fish to a better extend. 

 
Table 4. Performance comparison of different models. 

 

Model Dataset type Class IoU Mean IoU 

U-Net Binary segmentation 
Class 0 0.9768 

0.9159 
Class 1 0.8550 

U-Net Multiclass segmentation 

Class 0 0.9285 

0.8928 Class 1 0.8398 

Class 2 0.9102 

U-Net with VGG19 encoder Multiclass segmentation 

Class 0 0.9340 

0.8996 Class 1 0.8475 

Class 2 0.9172 

U-Net with inception v3 encoder Multiclass segmentation 

Class 0 0.9406 

0.9090 Class 1 0.8619 

Class 2 0.9244 

ResUnet (ℒCL) Multiclass segmentation 

Class 0 0.9523 

0.9221 Class 1 0.8755 

Class 2 0.9386 
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4.3 Loss Functions 
Background class pixels are higher than the other two classes, as described in the Table 2. Out of the total 

data, 55% is of class 0 (background), 12% of class 1 (fish) and 33% of class 2 (rock). Four different loss 

functions are used separately to train the model and the performance of the multiclass ResUnet model is 

analysed with each loss function. 

 

Cross-Entropy Loss: Multiclass classification is achieved by incorporating the softmax layer in the output 

layer as given in the equations below. Considering C number of classes, the probability of the ith class is as 

given the Equation (1). Cross-Entropy (CE) measures the dis-similarity between the predicted and the 

ground truth classes. CE loss equation is as given in Equation (2) where di is the ground truth or desired 

response and pi is the predicted response. 

𝑓(𝑝)𝑖 =
𝑒𝑝𝑖

∑ 𝑒
𝑝𝑗𝐶

𝑗

                                                                                                                                               (1) 

𝑙𝑜𝑠𝑠𝐶𝐸 =  − ∑ 𝑑𝑖
𝐶
𝑖=1 log (𝑓(𝑝)𝑖)                                                                                                                  (2) 

 

Focal Loss: Focal loss incorporates weights to the contribution of each sample to the loss based on the 

classification error. Pixel classes that are correctly classified will be weighted less, thus decreasing their 

contribution to the loss. Focal loss is represented using Equation (3), where α is the weighting factor with 

a value of 0.25 and γ is the focusing parameter with a value of 2.0. 

𝑙𝑜𝑠𝑠𝐹𝐿 =  − ∑ 𝛼(1 − 𝑝𝑖)𝛾  𝑑𝑖
𝐶
𝑖=1 log (𝑝𝑖)                                                                                                      (3) 

 

Dice Loss: Dice loss is the measure of similarity between predicted and ground truth segmentation masks. 

Dice loss incorporates the coefficient of precision (P), recall (R) and balance (β) with a value of 1.0 as in 

Equation (4). 

𝑙𝑜𝑠𝑠𝐷𝑖𝑐𝑒 =  1 − (1 + 𝛽2)
𝑃.𝑅

𝛽2.(𝑃+𝑅)
                                                                                                                (4) 

 

Jaccard Loss: Jaccard loss measures the similarity with the help of the Jaccard Index. i.e., the Intersection 

over Union (IoU) between prediction and ground truth mask, as in Equation (5), using precision (P) and 

recall (R). 

𝑙𝑜𝑠𝑠𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =  1 −
(𝑃∩𝑅)

(𝑃∪𝑅)
                                                                                                                               (5) 

 

4.4 Optimiser 
Adam is used as an optimizer with an initial learning rate of 1×10−3 (Kingma and Ba, 2014). The learning 

rate will be reduced 10−1 times if the validation loss is not reducing for five successive epochs. An early 

stopping criterion is set if the validation loss is not reduced for 20 successive epochs. The minimum learning 

rate was set as 1×10−7. 

 

4.5 Evaluation Metrics 
The model performance is evaluated using loss, accuracy, and IoU score in the training and validation 

phase. The performance of the model during testing is assessed with the test data using metrics such as 

Precision, Recall, F1 score, and IoU scores. 

 

 

 

 



Haridas et al.: Multiclass Image Segmentation using Deep Residual Encoder-Decoder Models … 
 

 

1518 | Vol. 9, No. 6, 2024 

Table 5. Quantitative analysis of training and validation on the multiclass ResUnet model with different loss 

functions. 
 

Model Architecture Loss function Metric Training Validation 

ℒCL ResUnet 
Categorical  

Cross Entropy Loss (CL) 

Accuracy 0.9643 0.9578 

IoU 0.8803 0.8692 

Loss 0.0296 0.0364 

ℒFL ResUnet 
Categorical  

Focal Loss (FL) 

Accuracy 0.9619 0.9576 

IoU 0.7566 0.7536 

Loss 0.0024 0.0029 

ℒDL ResUnet Dice Loss (DL) 

Accuracy 0.9609 0.9578 

IoU 0.9084 0.9009 

Loss 0.0483 0.0521 

ℒJL ResUnet Jaccard Loss (JL) 

Accuracy 0.9645 0.9578 

IoU 0.9162 0.9014 

Loss 0.0836 0.0977 

 

 

5. Model Training and Analysis 
U-Net model (Ronneberger et al., 2015) was trained on the original binary segmentation Fish4Knowledge 

dataset and later, the proposed three-class annotated segmentation dataset was utilised to train the U-Net 

model and the U-Net model with different encoder backbones with VGG19 (Simonyan and Zisserman, 

2014) and Inception-v3 (Szegedy et al., 2016). These results were compared with the results of the 

multiclass ResUnet model(ℒCL) which was also trained on the proposed three-class segmentation dataset. 

All the models were trained utilising the Cross-Entropy loss function. It was observed that the class 1 (fish) 

was recognised better by multiclass ResUnet architecture when compared to all other models. Considering 

the binary dataset, the addition of the rock class in the newly annotated three-class segmentation dataset 

improved the fish class’s segmentation performance to a better extent. The model with Inception v3 

backbone had a similar but slightly lower performance with ResUnet. The better performance exhibited by 

ResUnet may be due to the advantage of the residual connections in its architecture. Comparative results of 

different models in the test data are given in the Table 4. 

 

 
 

Figure 4. Segmentation mask predicted by multiclass ResUnet model optimised with four different loss functions 

Categorical Cross-Entropy loss (ℒCL), Categorical Focal loss (ℒFL), Dice loss (ℒDL) and Jaccard loss (ℒJL). 
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For further analysis, ResUnet architecture is trained on the proposed three-class annotated dataset with four 

different loss functions. ResUnet Model optimized with Categorical Cross-Entropy loss function is denoted 

as ℒCL, with Categorical Focal loss as ℒFL, Dice Loss as ℒDL, and Jaccard loss function as ℒJL respectively. 

The number of trainable parameters of the multiclass ResUnet model is 8,221,123 and non-trainable 

parameters is 6,400. Optimisation pipeline is implemented using tensorflow libraries. Model is trained on 

NVIDIA GeForce RTX 3060 and requires 24ms for the end to end processing on inference per image, 

corresponding to a rate of 41.66 frames-per-second (FPS), which will be suitable for real-time underwater 

applications. The training performance of each model is analysed with accuracy, loss, and IoU scores. It is 

observed that ℒJL obtained the highest accuracy and IoU scores, whereas the lowest accuracy and IoU scores 

were obtained by ℒDL and ℒFL respectively as shown in Table 5. It was analysed that the ℒFL converges faster 

followed by the ResUnet model optimised with ℒCL, ℒDL, and ℒJL. Except for Focal loss all other losses have 

large variations in the loss values with the validation data. 

 

6. Results and Discussions 

6.1 Segmentation Results on Test Data 
The optimized models are analysed for their performance with the test data. The segmented mask produced 

by four models is shown in Figure 4. The proposed multiclass ResUnet model with all four loss functions 

are found to have comparable performance. However, ℒJL with Jaccard loss function shows the upper hand 

in producing accurate segmentation masks. For careful analysis of models, the confusion matrix of the best 

and worst performing images for each model is also analysed.  

 

 
 

Figure 5. Analysis of confusion matrix of images with maximum and minimum IoU for the multiclass ResUnet 

model with different loss functions; ℒCL, ℒFL, ℒDL and ℒJL. 

 

 

6.2 Segmentation Performance of Different Models on a Single Image 
It was observed that each model performance varies with different images and the images that give best and 

worst IoU score also varies in different models. Hence, in order to compare the segmentation performance 

among the models one of the least and best performing common images is selected for analysis.  

 

The segmentation mask produced by all four multiclass ResUnet models are analysed with one of the 

images with the highest and lowest IoU scores. The segmented mask produced is compared with the ground 

truth and the intersection of the ground truth mask with the predicted mask is also plotted as shown in 
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Figure 6 and Figure 7. It is observed that on the images with good and moderate resolution, all model 

performs well, with ℒCL and ℒJL having better performance. For low-resolution images, models ℒCL and ℒFL 

cannot perform well, whereas ℒFL and ℒJL perform moderately well, with ℒJL having better performance. 

Thus, Focal loss and Jaccard loss performed well for ambiguous images with interclass interference in the 

pixel features, and all four losses Categorical Cross-Entropy, Categorical Focal loss, Dice loss, and Jaccard 

loss perform well in moderate ambiguous images. However, the Jaccard loss was found to be performing 

better with all the images across all the cases. 

 

6.3 Confusion Matrix Analysis on Interclass Ambiguities  
Confusion Matrix of images, which resulted in the maximum and minimum IoU for all four models, are 

analysed in Figure 5. It is observed that the test image with the best IoU score shows more ambiguity 

between classes fish (1) and background (0) than fish (1) and rock (2) for all the models. Jaccard loss-based 

ℒJL shows the best results among all. When analysed with the images having the least IoU score, it is 

observed that the pixel level classification shows ambiguities in the classes 0 and 1 for the loss function 

ℒCL, ℒFL and ℒDL, whereas ℒJL observes ambiguities among all three classes. However, the deviations in least 

IoU images are outlier cases, which are analysed in detail using the IoU boxplot in Figure 8.  

 

 
 

Figure 6. Segmentation mask analysis on the test image that observed the highest IoU score. 

 

 

 
 

Figure 7. Segmentation mask analysis on the test image that observed the lowest IoU score. 
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6.4 Analysis of Evaluation Metrics 
The box plot shown in Figure 8 represents the mean IoU and class-wise IoU scores of class 0 (background), 

class 1 (fish) and class 2 (rock) classes. It is observed that ℒJL optimised with the help of the Jaccard loss 

function performs better than all other models. However, ℒDL optimized with Dice loss function also shows 

a similar IoU score, but the performance is inconsistent as ℒDL possesses outliers in the prediction. 

Considering the class fish, the total number of outliers observed are 4 and 5 for ℒJL and ℒDL respectively. 

ℒCL optimized with Categorical Cross-Entropy loss function and ℒFL optimised with Categorical Focal loss 

function shows low performance compared to ℒDL and ℒJL. A total number of 6 outliers are observed for 

ℒCL and ℒFL each. It is also noticed that the worst performance of all four model loses are on the same fish 

image as analysed in the Figure 7. It is observed that even the blurred image has been segmented with a 

class 1 IoU of 0.751 by ℒJL, which has the highest performance, followed by ℒFL, ℒCL and ℒDL with a class 

1 IoU of 0.729, 0.636 and 0.563 respectively. 

 

 
 

Figure 8. Analysis of Multi-Class (MC) segmentation performance comparing the IoU of the multiclass ResUnet 

model with different loss functions such as Categorical Cross-Entropy loss (CCE), Categorical Focal loss, Dice loss, 

and Jaccard loss. 

 

 

Quantitative evaluation of the overall performance of the four models is analyzed with the help of the 

metrics precision, Recall, F1 Score, class-wise IoU, and mean IoU score, considering all the classes together 

in the test data as shown in the Table 6. Considering the main target of interest (fish), ℒJL and ℒDL are found 

to have the best class 1 precision of 0.9434 and ℒCL is found to have the best class 1 recall of 0.9365. ℒJL 

has the best F1 score of 0.9396, class 1 IoU of 0.8861, and mean IoU score of 0.9279. In conclusion, it can 

be observed that ℒJL is found to outperform all other models in terms of better precision, F1 score, class 1 

IoU, and mean IoU score considering all the classes. 
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The proposed multiclass ResUnet model shows comparable segmentation results with the state-of-the-art 

models in similar domains having multiclass underwater image segmentation dataset. UISS-Net (He et al., 

2024) evaluated on SUIM dataset achieved a mIoU of 72.09, FSFS-Net (Yang et al., 2023) achieved a 

mIoU of 79.62 on fish feeding datasets, CNet model (Zhang et al., 2024) on segmentation of coral seabed 

images achieved mIoU of 81.83, and U-Net-s Rns269e model (Chicchon et al., 2023) evaluated on dataset 

with fish, sea floor and water classes created out of images from SUIM, Rock fish and Deep fish datasets 

achieved mIoU of 87.45. Our proposed model (ℒJL) also shows better results with three-class annotation for 

coral reef images from Fish4Knowledge dataset with a mIoU value of 92.79. 

 

 
Table 6. Quantitative analysis of pixel classification report on test data. 

 

Model Metric Support Precision Recall F1 Score IoU Mean IoU 

ℒCL 

Class 0 1632837 0.9714 0.9797 0.9756 0.9523 

0.9221 Class 1 379504 0.9308 0.9365 0.9336 0.8755 

Class 2 936779 0.9769 0.9599 0.9683 0.9386 

ℒFL 

Class 0 1632837 0.9731 0.9778 0.9754 0.9520 

0.9229 Class 1 379504 0.9390 0.9294 0.9342 0.8765 

Class 2 936779 0.9713 0.9670 0.9691 0.9401 

ℒDL 

Class 0 1632837 0.9730 0.9784 0.9757 0.9526 

0.9242 Class 1 379504 0.9434 0.9291 0.9362 0.8801 

Class 2 936779 0.9708 0.9674 0.9691 0.9400 

ℒJL 

Class 0 1632837 0.9748 0.9788 0.9768 0.9546 

0.9279 Class 1 379504 0.9434 0.9358 0.9396 0.8861 

Class 2 936779 0.9727 0.9688 0.9707 0.9431 

 

 

6.5 Analysis of Performance over Various Underwater Noisy Conditions 
Performance of the model with respect to the different probable noisy conditions in the underwater 

scenarios such as blurriness, brightness reduction and red channel reduction of the images are analysed 

using synthesised images (Duntley, 1963; Galdran et al., 2015; Peng and Cosman, 2017). An image in the 

test data is analysed for three underwater noise cases at various levels. The blurriness of the image is 

analysed by applying the gaussian blur function with various window sizes corresponding to the lowering 

of the Structural Similarity Index Measure (SSIM). SSIM is utilised for analysing the quality of the noisy 

image with respect to the original image in the dataset (Brunet et al., 2012; Wang et al., 2004). Similarly, 

noisy scenarios in the brightness and red channels are simulated by the reduction of brightness and red 

channel at various levels, which are more prominent scenarios in underwater imaging.  

 

Figure 9 shows the noisy images, histogram of the corresponding noisy images, and the predicted 

segmentation mask in the aforementioned scenarios for the multiclass ResUnet model optimised with 

different loss functions (ℒCL, ℒFL, ℒDL and ℒJL). Similarly, Figure 10 shows the analysis of variations of IoU 

using different loss functions and various noisy scenarios. It is observed that increasing blurriness in the 

images primarily affects class 1 (fish) and has less influence on other classes. The model optimised with 

Jaccard loss is found to be more robust against the blurred conditions and maintains its IoU performance of 

0.8 untill the blurriness level of window size 45 i.e. SSIM 0.5.  
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Figure 9. Analysis of model performance with different underwater noisy scenarios. Noisy conditions considered 

are: (1) Gaussian Blurr effect with various blur window sizes (BWS), (2) Brightness Reduction with various 

brightness Levels (BRL), and (3) Red Channel Reduction with various Red Channel Levels (RCL). The image 

quality at each noisy level is indicated with the metric SSIM. The predicted mask of multiclass ResUnet model 

optimised with four different loss functions ℒCL, ℒFL, ℒDL and ℒJL are also analysed and observed that Jaccard loss 

(ℒJL) exhibits robust performance. 
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Figure 10. Analysis of the performance of each loss function on different noisy scenarios with respect to IoU. 

 

Blurriness causes the distribution of pixels of fish more towards either of the classes, rock or background, 

causing the decrease in the IoU score of fish, as the foreground objects tend to blend with the background. 

In the model optimised with Jaccard loss, the recall values of the fish decrease below 0.8 after the blurriness 

level of window size 45, i.e. SSIM 0.5, with precision and recall corresponding to the blurriest image being 

1 and 0.1545. At the same time, the class 2 rock maintains precision in the range of 0.99 to 0.78 and recall 

in the range of 0.92 to 0.85. Similarly, background maintains precision in the range of 0.96 to 0.86 and 

recall in the range of 0.9 to 0.93. From the observation, it can be understood that fish, the primary target of 

interest, possesses well-defined structures such as edges compared to the rock and background. Hence, as 

the blurriness increases the fish pixels get more confused with rock and background. 

 

Reduction in the brightness levels affects the performance of all three classes, with fish being the most 

affected. From the IoU plot it can be observed that ℒJL (Jaccard loss) was found to be robust compared to 

all other loss functions i.e. IoU score of 0.9 till the brightness level of -60 with SSIM 0.81. Whereas ℒCL, 

ℒFL and ℒDL were able to hold their performance at the brightness levels -40, -30 and -30 respectively. In the 

Jaccard loss optimised model, the recall values of the fish decrease below 0.9 after brightness level -60, 
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with precision and recall for the least brightness level of -100 being 0.89 and 0.17 respectively. However, 

the rock maintains precision and recall in the range of 0.96 to 0.88 and 0.92 to 0.57 respectively. 

Background maintains the precision and recall in the range of 0.96 to 0.72 and 0.99 to 0.98 respectively.  

 

It was observed that the effect of red channel reduction on model performance is significantly less compared 

to other noisy conditions. The model performance of ℒCL and ℒJL was observed without much fluctuation 

in the IoU score across various noise levels. However, ℒFL and ℒDL show some fluctuations in their 

performance. 

 

7. Conclusion 
This paper contributes to the underwater image analytics in two folds: (1) by creating novel annotated 

dataset for multiclass image segmentation for selected images from Fish4Knowledge dataset in coral reef 

scenarios; (2) by proposing a multiclass image segmentation model based on U-Net and residual modules 

for highly turbid underwater fish images in coral reef environment, and extensive analysis of the model 

performance with different loss functions in various simulated underwater noise scenarios.  

 

Image analytics is crucial for underwater exploration, especially for monitoring various species in habitats 

with rich biodiversity, such as coral reefs. However, various artifacts such as low-resolution, haziness and 

turbidity environments make the analytics challenging. Moreover, datasets are very scarce in underwater 

environments with fish in coral reef environment, especially for multi-class semantic segmentation 

scenarios. The Fish4Knowledge dataset, primarily a binary segmentation data, is considered as the 

candidate data for the analytics. This research extends the dataset to multiclass scenarios by additionally 

creating annotations for the coral/rock information as the third class and it has been observed that the 

addition of the new class improved the segmentation of the class fish to a better extent. The models trained 

and performing well with this dataset can be used for improved underwater analytics. 

 

The research also proposes a multiclass version of ResUnet architecture for multi-class semantic 

segmentation using the mentioned dataset annotations. Multiclass ResUnet was found to perform better 

when compared to the performance of Unet architecture and U-Net models with different encoder 

backbones utilising VGG19 and Inception v3 architectures. It is inferred that ResUnet based model showed 

the better performance as the identity connection ensures the previous stage information is also conveyed 

to the successive stages of feature extraction, along with the effective conveyance of gradient flow while 

optimisation, compared to the other architectures. Multiclass ResUnet architecture is further optimized 

using four different loss functions such as Categorical Cross-Entropy, Categorical Focal loss, Dice loss, 

and Jaccard loss, with a special focus on fish. Various underwater noisy conditions are simulated in the test 

images and analysed for the robustness of the model. The model optimised with Jaccard loss (ℒJL) was 

found to be robust in all the cases. ℒJL outperforms with fewer outliers and demonstrates better performance 

in identifying the primary target of interest fish with IoU score of 0.8545 and a mean IoU of 0.9575. ℒJL 

was also found to be robust in various levels of blurriness, brightness and red channel suppressions. ℒJL was 

able to extract the fish details with an IoU score of 0.8 till image blurriness corresponding to the image 

quality of SSIM 0.5, with an IoU score of 0.9 till the brightness level of -60 and maintains the IoU 

performance above 0.935 across all the red channel levels. Robustness showed by Jaccard loss function 

may be due to the region based optimisation advantage, comparing to the other loss functions that rely more 

on the pixel-based strategy, which helps in maintaining its performance even in the harsh underwater noisy 

scenarios.  

 

The proposed work is limited to the multiclass dataset annotation on selected images for Plectroglyphido 

don dicky class from the fish4knowledge and may not be generalised for other classes. Moreover, the work 
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considers only the four loss functions as Cross-Entropy, Focal, Dice and Jaccard losses for analysing the 

underwater noise scenarios and lacks loss functions that can consider the boundary differences of the 

predicted mask from ground truth. 

 

In future, the proposed multiclass annotation can be extended for other 23 classes of fish species from the 

fish4knowledge dataset. Architectures and loss functions that can accommodate geometric information of 

targets and underwater noises can be designed to make better segmentation models for the fish species. 

Further, the model can be evaluated with the real-world data and fine-tuned for the unseen noise scenarios 

in the original training dataset.  
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